1.关于大数据分析的四个关键环节
2.数据可视化工具软件哪个最好
3.大数据怎样帮助我们了解气候变化
4.共享单车数据可视化分析(Python/Seaborn)
关于大数据分析的四个关键环节
关于大数据分析的四个关键环节
随着大数据时代的到来,AI 概念的火热,人们的认知有所提高。为什么说大数据有价值 这是不是只是一个虚的概念 大家怎么考虑数据驱动问题 为什么掌握更多的数据就会更有效 这些问题很难回答,但是,大数据绝不是大而空洞的。
信息论之父香农曾表示,信息是用来消除不信任的东西,比如预测明天会不会下雨,如果知道了今天的天气、风速、云层、气压等信息,有助于得出更准确的结论。所以大数据是用来消除不确定性的,掌握更多的有效数据,可以驱动企业进行科学客观的决策。桑文锋对大数据有着自己的理解,数据采集遵循“大”、“全”、“细”、“时”四字法则。“大”强调宏观的“大”,而非物理的“大”。大数据不是一味追求数据量的“大”。比如每天各地级市的苹果价格数据统计只有 2MB,但基于此研发出一款苹果智能调度系统,就是一个大数据应用,而有些数据虽然很大,却价值有限;“全”强调多种数据源。大数据采集讲求全量,而不是抽样。除了采集客户端数据,还需采集服务端日志、业务数据库,以及第三方服务等数据,全面覆盖,比如美国大选前的民意调查,希拉里有70%以上胜算,但是川普成为了,因为采样数据有偏差,支持川普的底层人民不会上网回复。“细”强调多维度数据采集,即把事件的维度、属性、字段等都进行采集。如电商行业“加入购物车”的事件,除了采集用户的 click 数据,还应采集用户点击的是哪个商品、对应的商户等数据,方便后续交叉分析。“时”强调数据的时效性。显然,具有时效性的数据才有参考价值。如国家指数,CPI 指数,月初收集到信息和月中拿到信息,价值显然不同,数据需要实时拿到,实时分析。从另一个视角看待数据的价值,可以分为两点,数据驱动决策,数据驱动产品智能。数据的最大价值是产品智能,有了数据基础,再搭建好策略算法,去回灌产品,提升产品本身的学习能力,可以不断迭代。如今日头条的新闻推荐,百度搜索的搜索引擎优化,都是数据驱动产品智能的体现。
数据分析四个关键环节 桑文锋把数据分析分为四个环节,数据采集、数据建模、数据分析、指标。他提出了一个观点,要想做好数据分析,一定要有自底向上的理念。很多公司的数据分析自顶向下推动,用业务分析指标来决定收集什么数据,这是需求驱动工程师的模式,不利于公司长久的数据采集。而一个健康的自底向上模式,可以帮助公司真正建立符合自己业务的数据流和数据分析体系。 一、数据采集 想要真正做好大数据分析,首先要把数据基础建好,核心就是“全”和“细”。 搜集数据时不能只通过 APP 或客户端收集数据,服务器的数据、数据库数据都要同时收集打通,收集全量数据,而非抽样数据,同时还要记录相关维度,否则分析业务时可能会发现历史数据不够,所以不要在意数据量过大,磁盘存储的成本相比数据积累的价值,非常廉价。 常见的数据采集方式归结为三类,可视化/全埋点、代码埋点、数据导入工具。
第一种是可视化/全埋点,这种方式不需要工程师做太多配合,产品经理、运营经理想做分析直接在界面点选,系统把数据收集起来,比较灵活。但是也有不好的地方,有许多维度信息会丢失,数据不够精准。第二种是代码埋点,代码埋点不特指前端埋点,后端服务器数据模块、日志,这些深层次的都可以代码埋点,比如电商行业中交易相关的数据可以在后端采集。代码埋点的优势是,数据更加准确,通过前端去采集数据,常会发现数据对不上,跟自己的实际后台数据差异非常大。可能有三个原因:第一个原因是本身统计口径不一样,一定出现丢失;第二点是流量过大,导致数据丢失异常;第三点是SDK兼容,某些客户的某些设备数据发不出去,导致数据不对称。而代码埋点的后台是公司自己的服务器,自己核心的模拟可以做校准,基本进行更准确的数据采集。第三种是通过导入辅助工具,将后台生成的日志、数据表、线下数据用实时批量方式灌到里面,这是一个很强的耦合。数据采集需要采集数据和分析数据的人共同参与进来,分析数据的人明确业务指标,并且对于数据的准确性有敏感的判断力,采集数据的人再结合业务进行系统性的采集。二、数据建模很多公司都有业务数据库,里面存放着用户注册信息、交易信息等,然后产品经理、运营人员向技术人员寻求帮助,用业务数据库支持业务上的数据分析。但是这样维护成本很高,且几千万、几亿条数据不能很好地操作。所以,数据分析和正常业务运转有两项分析,数据分析单独建模、单独解决问题。数据建模有两大标准:易理解和性能好。数据驱动不是数据分析师、数据库管理员的专利,让公司每一个业务人员都能在工作中运用数据进行数据分析,并能在获得秒级响应,验证自己的新点子新思维,尝试新方法,才是全员数据驱动的健康状态。多维数据分析模型(OLAP)是用户数据分析中最有效的模型,它把用户的访问数据都归类为维度和指标,城市是维度,操作系统也是维度,销售额、用户量是指标。建立好多维数据分析模型,解决的不是某个业务指标分析的问题,使用者可以灵活组合,满足各种需求。三、数据分析数据分析支持产品改进产品经理在改进产品功能时,往往是拍脑袋灵光一现,再对初级的点子进行再加工,这是不科学的。《精益创业》中讲过一个理念,把数据分析引入产品迭代,对已有的功能进行数据采集和数据分析,得出有用的结论引入下一轮迭代,从而改进产品。在这个过程中大数据分析很关键。Facebook 的创始人曾经介绍过他的公司如何确定产品改进方向。Facebook 采用了一种机制:每一个员工如果有一个点子,可以抽样几十万用户进行尝试,如果结果不行,就放弃这个点子,如果这个效果非常好,就推广到更大范围。这是把数据分析引入产品迭代的科学方法。桑文锋在 2007 年加入百度时,也发现了一个现象,他打开邮箱会收到几十封报表,将百度知道的访问量、提问量、回答量等一一介绍。当百度的产品经理提出一个需求时,工程师会从数据的角度提出疑问,这个功能为什么好 有什么数据支撑 这个功能上线时如何评估 有什么预期数据 这也是一种数据驱动产品的体现。数据驱动运营监控运营监控通常使用海盗模型,所谓的运营就是五件事:触达是怎么吸引用户过来;然后激活用户,让用户真正变成有效的用户;然后留存,提高用户粘性,让用户能停留在你的产品中不断使用;接下来是引荐,获取用户这么困难,能不能发动已有的用户,让已有用户带来新用户,实现自传播;最后是营收,做产品最终要赚钱。要用数据分析,让运营做的更好。数据分析方法互联网常见分析方法有几种,多维分析、漏斗分析、留存分析、用户路径、用户分群、点击分析等等,不同的数据分析方法适用于不同的业务场景,需要自主选择。举个多维分析的例子,神策数据有一个视频行业的客户叫做开眼,他们的软件有一个下载页面,运营人员曾经发现他们的安卓 APP 下载量远低于 iOS,这是不合理的。他们考虑过是不是 iOS 用户更愿意看视频,随后从多个维度进行了分析,否定了这个结论,当他们发现某些安卓版本的下载量为零,分析到屏幕宽高时,看出这个版本下载按钮显示不出来,所以下载比例非常低。就这样通过多维分析,找出了产品改进点。举个漏斗分析的例子,神策数据的官网访问量很高,但是注册-登录用户的转化率很低,需要进行改进。所以大家就思考如何把转化漏斗激活地更好,后来神策做了小的改变,在提交申请试用后加了一个查看登录页面,这样用户收到账户名密码后可以随手登录,优化了用户体验,转化率也有了可观的提升。四、指标如何定义指标 对于创业公司来说,有两种方法非常有效:第一关键指标法和海盗指标法。第一关键指标法是《精益数据分析》中提出的理论,任何一个产品在某个阶段,都有一个最需要关注的指标,其他指标都是这个指标的衍生,这个指标决定了公司当前的工作重点,对一个初创公司来说,可能开始关注日活,围绕日活又扩展了一些指标,当公司的产品成熟后,变现就会成为关键,净收入(GMV)会变成第一关键指标。
数据可视化工具软件哪个最好
这个要根据使用对象和基础决定,一般会分为以下几种:
1、国内:零基础使用者(业务人员/运营等)、有一定开发能力
2、国外
国外的就不提了,对于大家使用体验感一般不好,下面推荐几款常用的工具:
1、Excel
产品功能:很全面
特点优势:功能全面,上手容易
适用人群:
(1)仅需要简单图表制作,数据量较小的本地数据操作,如果是数据库数据或者数据量很大,用excel就会卡
(2)喜欢钻研工具的小伙伴,因为excel其实功能很全面,但是很多复杂一点多的功能需要自己钻研如何实现,有一些设计能力才能做的好,不然就可能看起来丑丑的
2、Tableau/Power BI
这两款为什么要放在一起说呢,因为这两个工具都属于功能非常强大,但是学习成本高,而且我只能用到其中一小部分功能的工具
产品定位:Power BI 是自助式BI工具,Tableau 是数据可视化工具
适用人群:专业数据分析师
对比来说,Tableau 更能满足我这种日常数据分析的需要,但是价格也更贵,PBI自定义功能更强大,可以更自由的做数据分析,基本免费但是学习成本高
3、海致BDP
BDP分为企业版和个人版,个人版中有永久免费版本和会员版
产品功能:数据接入方面(各类数据库、各类第三方API,像百度推广、头条指数和微信公众号等等,其中有有个公共数据我比较喜欢,有每天更新的天气数据可以拿来练练手)
可视化图表方面,基本也可以满足需求,其中地图图表类型有很多
适用人群:BDP是使用起来,针对个人使用上功能最为全面的一款,免费版比较适合个人使用,付费版价格不一,针对多种需求可以自行选择
大数据怎样帮助我们了解气候变化
大数据怎样帮助我们了解气候变化
气候变化确实威胁着我们的星球,全球都应感受到它的毁灭性后果。美国航空航天局(NASA)气候模拟中心(NCCS)高性能计算负责人Daniel Duffy博士,介绍了大数据对气候变化研究工作的至关重要性。
NCCS为大规模的NASA科学项目提供高性能计算、存储和网络资源。其中许多项目涉及全地球性天气和气候模拟。这些模拟生成的海量数据是科学家永远读取不完的。因此,益发有必要提供分析和观察这些模拟产生的大数据集的方法,更深入了解气候变化等重大科学问题。
大数据和气候变化:它们是怎样运作的?
大数据和气候研究息息相关;没有海量数据就无法进行气候研究。
NCCS拥有名曰“探索号超级计算机”的计算机集群,主要目标是提供必要的高性能计算和存储环境,以满足NASA科学项目的需求。探索号计算机正在开展一系列不同的科学项目,其中的大部分计算和存储资源被用于天气与气候研究。
探索号计算机是一种高性能计算机,专门为极大规模紧密耦合的应用而设计,是硬软件紧密结合和相互依存的系统。虽然该计算机没有被用于从卫星等遥感平台采集数据,但该计算机运行的许多大气、陆地和海洋模拟都需要观测数据的输入。使用探索号计算机的科学家不断收集输入其模型的全球性观测数据。
然而,如果科学无法以有效手段观测和比对数据,即使向它们提供海量数据也毫无意义。NASA全球建模和模拟办公室(GMAO)增强性动画就是这方面的范例,该办公室利用多方来源的观测信息驱动天气预报。
GMAO的GEOS-5数据模拟系统(DAS)将观测信息与建模信息融合,以生成任何时间内都最为精确和质地统一的大气图像。每6小时的累计观测超过500万次,并对气温、水、风、地表压力和臭氧层的变量进行比对。模拟观测分八大类型,每类对不同来源的变量进行测量。
数据处理
气候变化模型需要具有大量存储和数据快速接入且数据不断增加的计算资源。为满足这一要求,探索号计算机由多个不同类型的处理器组成:79200个英特尔Xeon核心、28800个英特尔Phi核心和103680个NVIDIA图像处理器(GPU)CUDA核心。
探索号计算机的总计算能力为3.36万亿次,或每秒3,694,359,069,327,360次浮点运算。为使大家更好地理解这一规模的计算能力,该计算机可在一秒钟内完成活在世上的每个人以每秒将两个数字相乘的速度连续运算近140个小时的运算量。
除了计算能力外,探索号计算机还具有约33拍字节(petabyte)的磁盘存储空间。典型的家庭硬盘容量为一兆兆(terabyte)字节,因此,该计算机的存储能力相当于33000个这类磁盘。如果用它存储音乐,你可以编排一个长度超过67000年而不重复的演奏清单。
NCCS每年都对探索号计算机进行升级。随着其服务器和存储的老化,在四或五年后替换而不是继续运行部分设备实际上能够提高效率。例如2014年年底至2015年年初利用升级的计算机群取代了探索号计算机2010年升级的设备。在地面空间、功率和冷却包络相同的情况下,升级后的NCCS可将计算能力提高约7倍。退役设备通常会转变用途,用于内部支持和其他业务或大学等外部站点,包括马里兰大学巴尔的摩分校(UMBC)和乔治梅森大学(GMU)。
数据映射:气候变化与预测
NCCS生成的数据推动了不同重要研究和政策文件的起草工作。
这一数据使人们能够就我们星球的气候变化影响进行更知情的对话,并有助于决策机构针对气候预测制定出适用战略与行动。例如,该数据已被用于气候变化专门委员会(IPCC)推出的评估报告。NCCS从事和NASA科学可视化工作室观测的数据模拟,介绍了IPCC第五次评估报告提出的气候模型,对气候和降雨预计在整个21世纪的变化方式做了说明。
于2005年袭击了美国墨西哥湾沿岸的卡特里娜飓风突显了准确预报的重要性。虽然它造成了巨大损失,但要不是预警预报给人们留出了适当准备时间,损失就会严重得多。如今,NCCS的超级计算机主要负责GMAO全球环流建模,其分辨率比卡特里娜飓风时提高了10倍,因而能够更准确地观察飓风内部,并有助于对其强度和规模做出更精确的估计。这意味着气象学家能够更深入地了解飓风的走向及其内部活动,这对于就卡特里娜飓风这类极端天气做出成功规划和准备至关重要。
此外,观测系统模拟试验(OSSE)还利用全球气候模型的输出成果模拟NASA提出的下一代遥感平台,从而向科学家和工程师提供了虚拟地球,以便在制作新的感应器或卫星之前研究大气遥测的新优势。
未来的气候变化数据
数据是NASA的主要产品。卫星、仪表、计算机甚至人员都可能频繁进出NASA,但数据尤其是地球观测数据具有永驻价值。因此,NASA必须不仅让其他NASA的站点和科学家,而且要让全球都用上它生成的数据。
仅时时生成的数据量就构成了一大挑战。在研究系统的科学家都难以使用数据集的今天,NASA以外的人们获得可用数据更是难上加难。因此,我们开始研究创建一项气候分析服务(CAaaS),将高性能计算、数据和应用编程接口(API)相结合,以便为在现场与数据共同运行的分析程序提供接口。换句话说,用户可就他们关心的问题提问,并利用NASA系统的运行进行分析,随后将分析结果返回用户。由于分析结果的规模小于生成它的原始数据,这一系统将减少经不同网络传送的数据量,而更重要的是,API可以大大减少用户和数据间的摩擦。
以上是小编为大家分享的关于大数据怎样帮助我们了解气候变化的相关内容,更多信息可以关注环球青藤分享更多干货
共享单车数据可视化分析(Python/Seaborn)
项目数据来源于kaggle项目 Bike Share Demand ,使用Python对数据进行了可视化分析:
1. 提出问题
影响共享单车租用数量的因素有哪些?影响程度如何?
2. 理解数据
变量说明:
3.数据清洗
1)数据预处理:数据完整无缺失值
2)特征工程:从datetime中提取年、月、日、时、星期等时间信息
4. 可视化分析
1)单车使用量在天气维度上的分析(天气、温度、湿度和风速相关性)
可以看到,整体租车量受天气影响较为明显,极端的天气租车数量减少。
4级天气看起来有些异常,于是统计数据条目:
可以看到,4级天气只有1条数据记录,这种极端天气情况出现的数据极少。
温度和使用量有正相关关系,湿度与使用量有负相关关系,风速和使用量几乎不相关。
由图像可看出,使用量与温度、湿度和风速的关系,相关性有限。
2)单车使用量在时间维度上的分析(月份、季节、时间、星期等相关性)
总量来看,节假日和周末/工作日的租车数量基本相同。
图1可以看出2012年共享单车的使用量高于2011年,消费人群增加了1.5~2倍。两年内租车量随月份变化的趋势相同,6、7、8月有明显的高需求。
图2可以看出租车时间高峰为上午7-8点,下午5-6点,符合上下班通勤的时间范围。季节上看,春天的租车辆明显少于其它三个季节。
图3可以看出工作日租车辆主要为上下班时间,周末租车辆主要集中在10am-4pm之间。
3)单车使用量与注册用户/非注册用户的相关性
注册人数使用量明显高于非注册人数,
非会员casual主要是周末出行,为了游玩; 会员registered主要是为了周一到周五上班。
5. 总结